Wednesday, 30 January 2013

Generation of Heat and Power both in power plant(Cogeneration)



Cogeneration




Cogeneration (also combined heat and powerCHP) is the use of a heat engine[1] or a power stationto simultaneously generate both electricity and useful heat.
All thermal power plants emit a certain amount of heat during electricity generation. This can be released into the natural environment through cooling towersflue gas, or by other means. By contrast, CHP captures some or all of the by-product heat for heating purposes, either very close to the plant, or—especially in Scandinavia and eastern Europe—as hot water for district heating with temperatures ranging from approximately 80 to 130 °C. This is also called Combined Heat and Power District Heating or CHPDH. Small CHP plants are an example of decentralized energy.[2]
Cogeneration was practiced in some of the earliest installations of electrical generation. Before central stations distributed power, industries generating their own power used exhaust steam for process heating. Large office and apartment buildings, hotels and stores commonly generated their own power and used waste steam for building heat. Because of the economies and high cost of early purchased power, these combined heat and power operations continued for many years after utility electricity became available.[3] Cogeneration is still common in pulp and paper mills, refineries and chemical plants.
In the United StatesCon Edison distributes 66 billion kilograms of 350 °F/180 °C steam each year through its seven cogeneration plants to 100,000 buildings in Manhattan—the biggest steam district in the United States. The peak delivery is 10 million pounds per hour (corresponding to approx. 2.5 GW).[4][5]
Other major cogeneration companies in the United States include Recycled Energy Development[6] and leading advocates include Tom Casten andAmory Lovins.
By-product heat at moderate temperatures (212-356°F/100-180°C) can also be used in absorption chillers for cooling. A plant producing electricity, heat and cold is sometimes calledtrigeneration[7] or more generally polygeneration plant. Cogeneration is a thermodynamically efficient use of fuel. In separate production of electricity, some energy must be rejected as waste heat, but in cogeneration this thermal energy is put to good use.


Overview



Thermal power plants (including those that use fissile elements or burn coalpetroleum, or natural gas), and heat engines in general, do not convert all of their thermal energy into electricity. In most heat engines, a bit more than half is lost as excess heat (see: Second law of thermodynamics and Carnot's theorem). By capturing the excess heat, CHP uses heat that would be wasted in a conventional power plant, potentially reaching an efficiency of up to 80%,[8] for the best conventional plants. This means that less fuel needs to be consumed to produce the same amount of useful energy.
Steam turbines for cogeneration are designed for extraction of steam at lower pressures after it has passed through a number of turbine stages, or they may be designed for final exhaust at back pressure (non-condensing), or both.[9] A typical power generation turbine in a paper mill may have extraction pressures of 160 psig (1.103 MPa) and 60 psig (0.41 MPa). A typical back pressure may be 60 psig (0.41 MPa). In practice these pressures are custom designed for each facility. The extracted or exhaust steam is used for process heating, such as drying paper, evaporation, heat for chemical reactions or distillation. Steam at ordinary process heating conditions still has a considerable amount of enthalpy that could be used for power generation, so cogeneration has lost opportunity cost. Conversely, simply generating steam at process pressure instead of high enough pressure to generate power at the top end also has lost opportunity cost. (See: Steam turbine#Steam supply and exhaust conditions) The capital and operating cost of high pressure boilers, turbines and generators are substantial, and this equipment is normally operated continuously, which usually limits self generated power to large scale operations.

File:Masnedø power station.jpg

Some tri-cycle plants have used a combined cycle in which several thermodynamic cycles produced electricity, then a heating system was used as acondenser of the power plant's bottoming cycle. For example, the RU-25 MHD generator in Moscow heated a boiler for a conventional steam powerplant, whose condensate was then used for space heat. A more modern system might use a gas turbine powered by natural gas, whose exhaust powers a steam plant, whose condensate provides heat. Tri-cycle plants can have thermal efficiencies above 80%.
The viability of CHP (sometimes termed utilisation factor), especially in smaller CHP installations, depends on a good baseload of operation, both in terms of an on-site (or near site) electrical demand and heat demand. In practice, an exact match between the heat and electricity needs rarely exists. A CHP plant can either meet the need for heat (heat driven operation) or be run as a power plant with some use of its waste heat, the latter being less advantageous in terms of its utilisation factor and thus its overall efficiency. The viability can be greatly increased where opportunities for Trigenerationexist. In such cases, the heat from the CHP plant is also used as a primary energy source to deliver cooling by means of an absorption chiller.
CHP is most efficient when heat can be used on-site or very close to it. Overall efficiency is reduced when the heat must be transported over longer distances. This requires heavily insulated pipes, which are expensive and inefficient; whereas electricity can be transmitted along a comparatively simple wire, and over much longer distances for the same energy loss.
A car engine becomes a CHP plant in winter when the reject heat is useful for warming the interior of the vehicle. The example illustrates the point that deployment of CHP depends on heat uses in the vicinity of the heat engine.
Cogeneration plants are commonly found in district heating systems of cities, hospitals, prisons, oil refineries, paper mills, wastewater treatment plants, thermal enhanced oil recovery wells and industrial plants with large heating needs.
Thermally enhanced oil recovery (TEOR) plants often produce a substantial amount of excess electricity. After generating electricity, these plants pump leftover steam into heavy oil wells so that the oil will flow more easily, increasing production. TEOR cogeneration plants in Kern County, California produce so much electricity that it cannot all be used locally and is transmitted to Los Angeles[citation needed].
CHP is one of the most cost-efficient methods of reducing carbon emissions from heating systems in cold climates.

File:Metz biomass power station.jpg



Utility pressures versus self generating industrial


Industrial cogeneration plants normally operate at much lower boiler pressures than utilities. Among the reasons are: 1) Cogeneration plants face possible contamination of returned condensate. Because boiler feed water from cogeneration plants has much lower return rates than 100% condensing power plants, industries usually have to treat proportionately more boiler make up water. Boiler feed water must be completely oxygen free and de-mineralized, and the higher the pressure the more critical the level of purity of the feed water.[9] 2) Utilities are typically larger scale power than industry, which helps offset the higher capital costs of high pressure. 3) Utilities are less likely to have sharp load swings than industrial operations, which deal with shutting down or starting up units that may represent a significant percent of either steam or power demand.


Comparison with a heat pump


heat pump may be compared with a CHP unit, in that for a condensing steam plant, as it switches to produced heat, then electrical power is lost or becomes unavailable, just as the power used in a heat pump becomes unavailable. Typically for every unit of power lost, then about 6 units of heat are made available at about 90°C. Thus CHP has an effective COP compared to a heat pump of 6.[11] It is noteworthy that the unit for the CHP is lost at the high voltage network and therefore incurs no losses, whereas the heat pump unit is lost at the low voltage part of the network and incurs on average a 6% loss. Because the losses are proportional to the square of the current, during peak periods losses are much higher than this and it is likely that widespread i.e. city wide application of heat pumps would cause overloading of the distribution and transmission grids unless they are substantially reinforced.





ads: ebay

No comments:

Post a Comment